Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            null (Ed.)Abstract Objective This study aims at reviewing novel coronavirus disease (COVID-19) datasets extracted from PubMed Central articles, thus providing quantitative analysis to answer questions related to dataset contents, accessibility and citations. Methods We downloaded COVID-19-related full-text articles published until 31 May 2020 from PubMed Central. Dataset URL links mentioned in full-text articles were extracted, and each dataset was manually reviewed to provide information on 10 variables: (1) type of the dataset, (2) geographic region where the data were collected, (3) whether the dataset was immediately downloadable, (4) format of the dataset files, (5) where the dataset was hosted, (6) whether the dataset was updated regularly, (7) the type of license used, (8) whether the metadata were explicitly provided, (9) whether there was a PubMed Central paper describing the dataset and (10) the number of times the dataset was cited by PubMed Central articles. Descriptive statistics about these seven variables were reported for all extracted datasets. Results We found that 28.5% of 12 324 COVID-19 full-text articles in PubMed Central provided at least one dataset link. In total, 128 unique dataset links were mentioned in 12 324 COVID-19 full text articles in PubMed Central. Further analysis showed that epidemiological datasets accounted for the largest portion (53.9%) in the dataset collection, and most datasets (84.4%) were available for immediate download. GitHub was the most popular repository for hosting COVID-19 datasets. CSV, XLSX and JSON were the most popular data formats. Additionally, citation patterns of COVID-19 datasets varied depending on specific datasets. Conclusion PubMed Central articles are an important source of COVID-19 datasets, but there is significant heterogeneity in the way these datasets are mentioned, shared, updated and cited.more » « less
- 
            When developing topic classifiers for real-world applications, we begin by defining a set of meaningful topic labels. Ideally, an intelligent classifier can understand these labels right away and start classifying documents. Indeed, a human can confidently tell if an article is about science, politics, sports, or none of the above, after knowing just the class labels. We study the problem of training an initial topic classifier using only class labels. We investigate existing techniques for solving this problem and propose a simple but effective approach. Experiments on a variety of topic classification data sets show that learning from class labels can save significant initial labeling effort, essentially providing a” free” warm start to the topic classifier.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available